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1 
d H ( y ) -  2V~-0- [exp (-y2/40-2)] [1 +(20-2-y2)/4d2]dy. (7) 

In this case the variance of the difference is 20 -2 . As long as 
0-~d the correction term is neglible and for all practical 
purposes the distribution dH(y) can be treated as normal. 

In calculating the distributions we have assumed that the 
atomic coordinates of the actual crystal structure are un- 
correlated normal variates with small isotropic errors. In 
practice this condition is often rather well met and at least 
in these cases the distribution of interatomic distances is nor- 
mal to a good approximation. The difference between two in- 
dependently determined interatomic distances is then normal- 
ly distributed to an even better approximation than the 
distances themselves [cf. equations (6) and (7)]. We there- 
fore conclude that in most, if not all cases crystallographic- 
ally independent molecular geometries can be compared 
using the powerful method of normal probability plot 
analysis, as suggested by De Camp (1973). 
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The distribution of interatomic distances across unrelaxed stacking faults is shown to be independent of the 
sense of the fault vector if the shear plane is perpendicular to an n-fold axis or if the shear direction is parallel 
to an n-fold axis. Hence the unrelaxed energies of such faults, calculated using pair potentials, are symmetric 
with respect to the sense of the shear. 

In a recent computer simulation study of generalized 
stacking faults in body-centred cubic crystals (Bristowe, 
Crocker & Norgett, 1974) it was found that the unrelaxed 
energy of the faults was independent of the sense of the 
shear direction. The faults were all on (112) planes and the 
displacements were in +[111] directions. In addition the 
interatomic pair potential used to evaluate their energy 
terminated between second and third nearest neighbours. 
The aim of the work was to determine the structure and 
energy of the faults which arise on allowing the atoms to 
relax, subject to the pair potential, from their initial sheared 
positions to equilibrium configurations. However, the sym- 
metric variation of the unrelaxed energy has also proved to 
be of interest. This energy is the sum of the pair interactions 
between atoms which, for a given potential ~0(r), are defined 
by the interatomic spacings r. Thus a symmetric variation of 
fault energy indicates that positive and negative rigid-body 
shears produce identical distributions of distorted bond 
lengths. This is illustrated for the special case of the b.c.c. 
fault in Fig. 1. It suggests the following general problem 
which will be the subject matter of the present note: Given 
a crystal which undergoes a rigid-body shear on a plane 
ht=(hlh2h3) in a direction u~=[ulu2u a] under what condi- 
tions are the distributions of distorted bond lengths for 
positive and negative shears identical? 

Consider first a bond defined by the lattice vector p t =  
[plp2pa] in the undistorted crystal. If  the shear plane h~ cuts 
this bond the vector becomes p~ -L-_ au t in the faulted crystal. 
Here a is a parameter defining the magnitude of the dis- 
placement and the two signs correspond to the two senses 

of the shear. The length of the bond is thus changed from 
I= (plpJctj)ll2 to 

l + = [(p~pJ + a2utu j + 2ap~uJ)cu] u2 

where c u is the direct metric tensor. Clearly l + # l -  and 
thus if the collected bond lengths for opposite shears are to 
be identical another vector q~ must exist which gives rise to 
distorted bond lengths L -  satisfying L ± = l a: for all values 
of a. For this to occurp t and qt must be crystallographically 
equivalent variants r~ and r~, of a particular vector form r t, 

-----,_~- ~tp + V ,4. 
\ 
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Fig. 1. Faults on a (112) plane in a b.c.c, c~ystal projected on to 
a (1T0) plane, atoms represented by circles and squares 
lying in adjacent (1i0) planes. The nearest-neighbour bonds 
p=½[1T1] and q={[111] shown in the perfect crystal (a) are 
decreased in length and increased in length respectively by 
the shear in the [111] direction shown in (b). These changes 
in length of p and q in (b) are exactly equal to the changes 
in length of q and p respectively arising from the equal and 
opposite shear shown in (c). Note that the fault plane inter- 
sects two bonds parallel to q but only one parallel to p for 
each atom in the interface. However in this projection the 
vector p may also be considered to represent the nealest- 
neighbour bond ½[T11] so that equal numbers of bonds are 
in fact extended and contracted. 
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Fig. 2. Relationships between a triad of bond vectors r~(e= 
1,2, 3) related by a three-fold axis, which is perpendicular to 
a fault plane h~. Diagram (a) shows hi (broken line) in section 
and demonstrates that t r, h~ is constant for the three vectors. 
Diagram (b) shows a plan view of h~ and indicates that the 

t projections of the vectors r~ on the plane ht make angles of 
0, 0 + 2zt/3 and 0 + 4~/3 with td. In addition their projections 
on u ~ have lengths s~ such that ~s ,=0.  

which satisfy r~uJcu = -r~tdcu. Matched pairs of this kind 
must of course arise for all possible variants rl  of rq In ad- 
dition, as indicated in Fig. 1 for the b.c.c, fault, for each 
r~ there will be r~hi parallel bonds which cross the fault for 
each atom in the plane hi. Hence to obtain identical distri- 
butions of bond lengths for opposite shears the condition 

~. (r~h3 (r2Mcu)=O (1) 

must be satisfied for all lattice vectors r'. 
There are two groups of solutions of equation (1). The 

first arises when the shear plane h~ is perpendicular to an 
n-fold axis. The vectors r2 then occur in groups of n with 

(r~h3 constant, as shown for the case of n = 3 in Fig. 2(a). 
Thus equation (1) reduces to 

~ (rluJcO = 0 
0c=| 

which is equivalent to the identity 

~=t~ cos ( 0 +  2 (~ -  1)rt ) n  = 0  

where, as shown in Fig. 2(b), 0 is the angle between u ~ and 
the projection of rx ~ on to the plane hr. Thus equation (1) is 
satisfied by each group of n vectors and hence by all vectors 
r ~ crossing the fault plane. Similarly the second group of 
solutions arises when the shear direction u ~ is parallel to an 
n-fold axis. The term (r~Mc u) is then constant so that equa- 

tion (1) reduces to ~ (r~hi)=O, which is equivalent to the 
r t = l  

above identity if 0 is now the angle between h~ and the 
projection of r~ on to the plane normal to u ~. Note that in 
these two solutions the second shear elements, u t and h~ 
respectively, are unrestricted, as is the number of crystal- 
lographically distinct bonds rq However, for crystals, n is 
restricted to 2, 3, 4 and 6. For n = 2 and 4, when the shear 
plane is a mirror plane or the shear direction is perpendicular 
to a mirror plane, these solutions are trivial as the structures 
of the pairs of faults are identical, although oriented different- 
ly. However for n =  3 and 6 positive and negative shears 
produce distinct structures for the faults, so that the fact that 
identical sets of distorted bond lengths occur in the two 
cases is most unexpected. 

Returning to the (112) [111] faults in b.c.c, crystals which 
prompted this study, it is now seen that they produce sym- 
metric variations in fault energies because the shear direc- 
tion is a threefold axis. The same result would also have 
been obtained for any shear plane (hx, h2,hx + ]12) containing 
this axis and for any pair potential extending to any number 
of neighbours. Also the crystal structure need not have 
been b.c.c, as long as the shear direction remained a three- 
fold axis. Finally in the b.c.c, structure symmetric unrelaxed 
fault energies must also arise for shears in any direction on 
the {110} and {111} planes and for shears on any plane in 
the (110) direction. 
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discussions. The work was supported in part by the Science 
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